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knowledged in the cultural evolution literature, ecological
of the physical environment that affect the way in which
tions evolve—haven’t been investigated experimentally.
nt an experimental investigation of this type of factor by
ission chain (iterated learning) experiment. We predicted
in the distance between identical tools (drums) and in the
they are to be used would cause the evolution of different
idence confirms our predictions and thus provides a proof
ecological factors—here a motor constraint—can influence
tions and that their effects can be experimentally isolated
One noteworthy finding is that ecological factors can on
o more complex rhythms.

factors that play a causal role in the evolution of cultural
and artefacts, it is useful to distinguish psychological and

. Psychological factors are capacities and dispositions which
l, such as the ability to acquire a language, or specific to
ups, such as the ability to read a given script. Ecological fac-
the physical environment that imposes constraints and offers
uman action and interaction. Ecological factors can be univer-
r local like the climate. They can consist of the presence of
material objects or substances in the environment or in the
ral distribution of these objects. Many ecological factors are
or small-scale products of cultural activity, as for instance, a
as a set of kitchen tools [1].
sychological and ecological factors are involved in the evol-
ltural trait, they are not equally important in all cases.
tors, for instance, play the main role in the evolution of
logical factors in the evolution of agriculture. In the labora-
inciple possible to investigate the two types of factors
as been done in particular in studies inspired by the cultural
ork [2,3]. In this framework, the evolution of a cultural trait
not only in terms of competition and selection of faithfully
ts but also in terms of transformations in the process of trans-
ing biased rather than random, tend to converge toward
stance, in a transmission chain experiment, a story on blood-
leeding is practiced on a body part of the patient far from the
pain tends to be recalled and transmitted with the bleeding
arer to the localization of the pain. This transformation is then
s of successive recall and transmission episodes, suggesting
ards co-locating pain and cure has contributed to making
oodletting a cultural attractor [4]. This kind of convergence
Published by the Royal Society. All rights reserved.
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can secure the relative stability of a cultural trait at the popu-
lation level over generations in spite of relatively low fidelity
in individual episodes of transmission.

There has been a growing corpus of research on psychologi-
cal factors of attraction (including, for instance, mechanisms
involved in predicting other agents’ actions and how they
influence which spatial compositions are produced in human

how transmission can magnify individual learning biases and
thus produce outputs with universal features (such as an iso-
chronous underlying beat, hierarchical organization of beats
of unequal strength and grouping of beats in groups of 2 or 3)
from random, computer-generated, rhythmic sequences.

Our study departs from previous transmission chain
experiments in several key ways: (i) the topic of inquiry,

X 24 trials X 24 trials X 24 trials
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Figure 1. A schematic description of the experimental procedure. The participants first heard a sequence of 13 taps. This sequence was either a metronome-like
sequence (for participants in the first generation) or a sequence produced by the previous participant in the chain (for participants in generations 2 to 6). The 24
trials were transmitted and their order randomized between each participant in a chain, and so until the sixth participant of the chain.
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portraits [5]). Ecological factors of attraction have been
occasionally discussed [6], in particular with reference to
animal technical traditions [7,8], but they have not yet been
experimentally investigated as such. Here, we demonstrate
the feasibility of such an investigation by studying the role of
a very simple ecological factor—the spatial arrangement of a
set of drum pads—in the evolution of a simple rhythm.

Musicality is considered to be a biological and cognitive
trait spontaneously developing in humans [9]. It makes poss-
ible and underlies musical practices, including singing [10],
across human cultures [11]. A variety of major works in
studying musical production have focused on more specific
universal patterns or characteristics that are found in music
productions from all human groups and societies. Exploring
both universality and diversity of musical productions was
already at the heart of Lomax’s Cantometrics projects [12,13],
continued by more recent initiatives such as CantoCore [14].
Research has revealed the existence of statistical universals
in human music [15,16] and demonstrated that humans are
able to identify the different uses of songs even from cultures
other than their own (e.g. lullabies) [17].

Such approaches have built on a more general scientific
interest for the human species-wide capacity for music, its
possible analogues and homologues in other species and its
evolutionary basis [11,18–23]. Such fruitful approaches have
mostly focused on psychological factors.

Here, we present a study of ecological factors of attraction
in the transmission of rhythm using a transmission chain
experiment. Transmission chain experiments (also called iter-
ated learning experiments) mimic cultural transmission in
the laboratory by borrowing the structure of the well-
known children game ‘telephone’ [24]. The experimenter
gives the first participant some content as an input, which
she is then asked to reproduce. This input given to the first
generation of participants is referred to as the ‘seed’. What-
ever is produced by the first participant is then given to the
second participant in the chain, who is asked to reproduce
it—and so on until the last participant in the chain (figure 1).
This type of experimental paradigm has been proven useful in
studying the interactions between cultural transmission and
rhythm. In particular, one such experiment [25] focused on
RSPB20202001—13/10/20—23:25–Copy Edited by: Not Mentioned
i.e. the role of motor constraints in music-making has not
been investigated with this methodology, and our design
allows for both (ii) a pattern of divergence and (iii) an
increase in complexity. Those last two aspects raise methodo-
logical questions related to paradigms commonly used in
studying the evolution and emergence of language.

Previous studies used diffusion chains experiments to
show how some priors in the participants’ minds determine
which contents remain stable through transmission (e.g.
[26]). Here, we expect such biases to come from the spatial
arrangement of the drums (i.e. ecological properties), which
may influence the participants’ movements rather than
from a psychological prior. Motor constraints have been
shown to influence melodic aspects in both human and
bird songs [27,28]. By comparing anatomies and songs of
humans and birds, Adam Tierney and colleagues were able
to relate the predominance of arch-shaped and descending
melodic contours in musical phrases to respiratory con-
straints, the tendency for phrase-final notes to be relatively
long to articulatory constraints, and the bias toward small
pitch movements between adjacent notes in a melody to vibra-
tory constraints. Yet, little is known about the impact of motor
constraints on rhythmic aspects of music, which is the focus of
this study. The possibility that ecological properties of tasks,
and how they interact with human cognition, can bias trans-
mission and thereby shape specific characteristics of cultural
items, although acknowledged in theoretical works, has not
been explored empirically using transmission chains. In this
experiment, we test whether spatial properties and their effects
on human movement can act as a factor of attraction, by
predicting characteristics of participants’ productions from
parameters relating to the ease with which the required move-
ments can be produced. We manipulate the order in which the
drums have to be hit, and as a consequence, the size of the
movements, i.e. the distance covered by the movements,
required to produce taps. When, for example, a particular dis-
tance requires a largemovement, it is harder to produce a short
IOI, and easier to produce a longer one [29].

The transmission chain experiment we present here
includes four conditions (figure 2). Two of our conditions are
Equal Movements conditions with the same distance to cover
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for all movements, which is either Small (SMALL SMALL con-
dition) or Large (LARGE LARGE condition). The two remaining
conditions are Unequal Movements conditions. They include
both types of distances to cover and differ by the order in
which they must be covered—either as the first or third move-
ment (leading to conditions respectively named LARGE SMALL

SMALL and SMALL SMALL LARGE). All four conditions start with
the same seed (a uniform metronome sequence). This study
of motor constraints thus provides a demonstration of the
possibility of experimentally singling out ecological factors
and investigating their specific contribution to the evolution
and stabilization of cultural traditions.

Previous studies using iterated learning paradigms have
demonstrated patterns of convergence between chains (i.e. con-
vergence on a ‘universal-like’ property of the production, e.g.
integer ratio intervals [30]). By contrast, we aim to test whether
transmission chains can, because of differences in an ecological
factor across conditions, lead to different stable ‘cultural items’
(recurrent rhythmic sequences) from the same seed. If motor
constraints constitute a factor of attraction in this drumming
task, then differences in spatial arrangements across chains
that start from the same seed should result in a pattern of diver-
gence. So, by contrast with previous experiments, we predict a
divergence between conditions and the emergence of different
rhythmic sequences.

Finally, previous experiments focusing on artificial
languages [31,32] or musical sequences [25] have used trans-
mission chains in order to demonstrate how structure can
emerge from random experimental inputs [33,34]. This cumu-
lative emergence of structure through transmission can be
understood as a subtractive [35] ratchet effect on the basis of
the assumption that complexity gets reduced over generations
with no decrease in performance (e.g. in communication
games, the duo or group guesses the correct target from the
words used at least as frequently at the end of the experiment
as at the beginning). By contrast, the transmission chains here
start with a rhythmic sequence that is rhythmically as simple
as possible, making it impossible for participants to produce
a simpler sequencewith the same number of taps. In particular,
the seed rhythm is composed of the repetition of just one

Figure 2. Depictions of our four conditions. All conditions started by tapping
(LARGE LARGE and SMALL SMALL), and the lower row depicts the two Uneq
RSPB20202001—13/10/20—23:25–Copy Edited by: Not Mentioned
inter-onset-interval (henceforth IOI). We expect transmission
episodes to lead to stable andmore complex rhythms, resulting
from biases created by kinematic patterns in a drumming task.
Such results would demonstrate an additive ratchet effect.
Specifically, we predict an increase in complexity (from an iso-
chronous beat using only one IOI to a structured rhythmic
pattern mixing two different IOIs. We expect the transmitted
content to gain, through repeated reproduction, a quality
(here, complexity and a specific rhythmic structure) rather
than getting rid of variability (coming from the random
character of the seed in previous experiments). We record the
evolution of the simple uniform rhythm used as a seed over
six generations in a transmission chain.

Thus, in this study, we predict that the difference in
kinematics between the different conditions will lead to quali-
tatively and quantitatively different productions. The overall
predicted pattern is one of divergence, i.e. the rhythms pro-
duced in chains from different conditions will be less and
less alike over time (i.e. experimental generations, hypothesis
1). This divergence will be explained by a combination of
more specific hypotheses on how the physical affordances in
the different conditions impact the rhythm produced.

Through all conditions, we hypothesize, smaller move-
ments will produce shorter IOIs and larger movements
longer IOIs. In Equal Movements conditions, the rhythm of
the sequences produced should remain isochronous, while
Unequal Movements conditions should move away from iso-
chronous rhythms (hypothesis 2). In Equal Movements

ents

ments
LARGE SMALL SMALL 

LARGE LARGE

rightmost pad. The upper row depicts the two Equal Movements conditions
vements conditions (SMALL SMALL LARGE and LARGE SMALL SMALL).
tive length of the IOIs: shorter in the condition that includes
only small movements than in the condition that includes
only large movements (hypothesis 3). In Unequal Move-
ments, we can predict which IOI will be longer: it should
be the first one in the sequence whenever the larger move-
ment occurs first, and the third in the sequence whenever
the larger movement occurs third (hypothesis 4). Together
these four hypotheses predict, with precision, characteristics
of the rhythmic sequence participants will produce at the
end of the chains, based on the motor constraints they
encounter in each condition.



Finally, we expect to have stable rhythms by the end of
our transmission chains. The predicted emergence of stability
means that we expect the amount of change—i.e. copying
errors (differences between what a participant heard and
what she produced)—to decrease through the chain (which
corresponds to learnability or copying accuracy increasing)
(hypothesis 5). This has been observed in previous exper-
iments as well, e.g. [25], and is usually interpreted as an
increasing match between what participants have to repro-
duce and their own biases. We expect this type of gradual
change to occur in all conditions.

2. Methods
(a) Participants
A total of 120 participants (38 Male, 80 Female, 2 NA, mean age =
26, s.d. = 4.5) participated in this experiment. All participants were
right-handed and had no musical training (they had neither
learned to play an instrument, nor takenmusic lessons). All partici-
pants gave their informed consent and received gift vouchers as
compensation. This research was approved by the United Ethical
Review Committee for Research in Psychology (EPKEB) on the
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behalf of the Central European University, (ethics approval
number 2018-18).

(i) Sample size and sample size rationale
We collected five transmission chains of six participants (gener-
ations) per condition. Each participant took part in 24 trials.
These sample sizes were decided a priori on the basis of previous
experiments and pre-registered1. Our pre-registration is available
here: https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aa
c4abc172a7b. Participants were randomly assigned to one of the
four different conditions.

(b) Stimuli
(i) Seed and transmitted sequences
For the first generation, the seed—i.e. the first generation’s
input—was a regularly spaced beat, isochronous (metronome-
like) sequence, of 13-beats. For all subsequent generations, the
input consisted of whatever sequence was produced by the pre-
vious participant in the chain. The initial seed interval ratio of
evenly spaced beats (1 : 1 : 1) also has one advantage: it is

rather infrequent in most music our participants might be fam-

3. Results
iliar with, thus avoiding biased priors or showing strong
cultural variation [36,37].

The seed is played at a tempo of 120 BPM. This tempo was
chosen based on the results from a pilot experiment which indi-
cated that, with this tempo, it is possible, but not trivially easy to
reproduce the given pattern, but the reproduction was not trivi-
ally easy with our task setup. Moreover, 120 BPM (beats per
minute) or an IOI of 500 ms is known to be a ‘preferred’ tempo
for humans, being easy to process [38] and used in a variety of
tasks, including serial interval production [39].

(ii) Physical setup
Participants were given headphones and a single drumstick and
presented with a set of three independent Millenium drum pads
connected to a MacBook pro laptop via a trigger box (ddrum
DDTi) that sent MIDI notes. The three drum pads had a diameter
of 20.5 cm and were evenly spaced, by 20 cm (see also figures 1
and 2). Overall, our large movement had to cover twice the
distance covered by small movements. All three drum pads
used produced the same sound (same pitch): they were all set
RSPB20202001—13/10/20—23:25–Copy Edited by: Not Mentioned
to a percussion sound with a sharp onset (MIDI Note 60 from
the standard Mac OS sound bank).

(c) Procedure
Participants were asked to recreate a pattern of sounds by tapping
different drum pads in a certain order. The experimental design
used a linear transmission chain method, i.e. with output from a
participant serving as input for the next participant, akin to the
telephone game. Participants were explicitly asked to reproduce
the audio they heard as faithfully as possible.

Each participant had to listen to and reproduce 24 sequences
spread across 24 trials. In each trial, participants heard a sequence
of 13 taps, which was either a metronome (for the first participant
in each chain), or a sequence produced by the previous participant
in a chain, whichwas the case for all participants in generations 2 to
6. Participants then had to reproduce the sequence using the drum-
stick and the drum pads in front of them. Depending on the
condition theywere assigned to, they had to reproduce the sequence
they heard either using onlymovements covering the same distance
(Equal Movements conditions, with only small or only large dis-
tances), or a mix of large and small distances, in a different order
in each condition (Unequal Movements conditions, figure 2). They
had to listen to and reproduce 24 sequences spread across 24 trials.

Each sequence was recorded and given to the next participant
in the chain. Participants were unaware they would be listening to
stimuli produced bya previous learner. All sequences produced by
one participant were transmitted to the next participant in the
chain, with no change and in their entirety. The order in which
sequences were presented to participants was randomized at
each transmission step. We recorded all taps produced by the
participant with their velocity (ranging from 0 to 127) and with
timestamps (from which we calculated IOIs).

After the behavioural task, participants completed a short
questionnaire with the following questions: (i) how difficult
was the task? (Answered on a scale from 0, very easy, to 7,
very difficult), and (ii) do you have any musical experience?
(Classes, played an instrument?) If yes, please specify.

The physical apparatus and the initial sequence were the same
in all four conditions. The study had a between-subjects design
such that each participant took part in only one of the four con-
ditions. In total, the experiment took around 20 min per participant.

(d) Data analysis
(i) Data pre-processing
Whenever a sequence was missing or compromised due to tech-
nical problems, one other trial among the 23 available ones from
the same participant was randomly selected and passed on. This
ensured that all participants went through the same number of
trials, and no participants who had such doubles as input
sequences noticed that they were actually identical. The total
number of trials with problems (not recorded/recording not
viable due to software issues) was 22 (over a total of 480 trials,
i.e. amounting to 4.58% of the total number of trials, and
distributed over all four conditions).
In order to illustrate our results, we created audio files that
reflect themean sequence produced byparticipants of each con-
dition, at the first and the last generation, which can be listened
to at https://osf.io/8p4mz/?view_only=ec41d8ed252d4cb-
f963aac4abc172a7b. These audio files were produced by
averaging each IOI (out of the 12 included in each sequence
of 13 taps) from all the sequences produced by all participants
from all chains of the same condition at the same generation.
An audio file is also available for the sequence used as the seed.

https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b
https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b
https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b
https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b
https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b
https://osf.io/8p4mz/?view_only=ec41d8ed252d4cbf963aac4abc172a7b


(a) Hypothesis 1: overall divergence between different
conditions

We predicted that chains would become increasingly differ-
ent between all four conditions. We tested this prediction
by calculating the Jensen–Shannon divergence (JSD) on the
sequence of IOIs. Here, we prefer the JSD as a measure of dis-
tance to the Kolmogorov–Smirnov Distance (KSD) because of
its sensitivity to the order of the IOIs. For instance, comparing
the two sequences 500-550-600 and 600-500-550 would give a
KSD of zero, but a JSD of 4.93. The JSD was calculated for
each generation separately by comparing each trial in a
given condition to all trials from the same generation but
from the other conditions. The average distance of a chain
to other chains that aren’t from the same condition (the diver-
gence between conditions) increased over time. A Page trend
test confirmed that the JSD between conditions increased
over generations, whether we included the first generation
(L = 1778, k = 6, N = 20, p < 0.001) or not (L = 1059, k = 5,
N = 20, p < 0.001), figure 3.

(b) Hypothesis 2: Equal Movements conditions versus
Unequal Movements conditions

Our experimental design builds on the assumption that larger
movements tend to produce longer IOIs. We thus tested
whether that assumption by use of a mixed effects model.
IOI was the dependent variable. Size of the movement (Large
or Small) was used as a fixed effect, while participant nested
by generation was used as a random effect. The condition
was not used in this model, as some conditions included
only one type of movement, while others had both. The
mixed effects model revealed a significant main effect of the
movement’s size, such that compared to large movements,

complexity under the form of a bimodal distribution of
IOIs (i.e. a non-isochronous rhythmic sequence), whereas
both conditions with not all equal movements equal, Unequal
Movements Conditions (LARGE SMALL SMALL and SMALL SMALL

LARGE conditions) would not (i.e. they would produce
non-isochronous rhythmic sequences).

Visual inspection confirms that the distribution of IOIs in
the Equal Movements conditions tended to become bimodal,
whereas it wasn’t the case for Unequal Movements conditions
(figure 4).

Rhythmic structure was assessed using normalized
pairwise calculations (nPC) [40,41]. Normalized pairwise
calculations provide a ratio between two successive IOIs: it
does not consider their absolute value, only the relationship
between them. From [40], it can be calculated as

nPC ¼ 200� antecedent IOI� consequent IOI
antecedent IOI + consequent IOI

����

����:

Visual inspection suggests that the distribution of nPC
became bimodal for Unequal Movements conditions (i.e.
LARGE SMALL SMALL and SMALL SMALL LARGE), but that this
was not the case for Equal Movements conditions (LARGE

LARGE and SMALL SMALL)—figure 5.
In order to test for a difference in the types of rhythm, we

computed the normalized pairwise variability index (nPVI,
see below) for each sequence produced by participants. The
normalized pairwise variability index is a measure that
allows for a minimal value of 0 when all IOIs are equal,
and increases as a sequence gets more unequal IOIs. It can
be calculated as follows, from [40]:

nPVI ¼ 100
m� 1

�
Xm�1

k¼1

IOIk � IOIkþ1

ððIOIk þ IOIkþ1Þ=2Þ
����

����:

This distribution of nPVIs is used to test whether there is a
change from the seed (i.e. metronome sequence): any diver-
gence from this rhythm translates to an increase of the nPVIs.
Overall, nPVI increased for both Equal Movements conditions
(L = 829, k = 6, N = 10, p < 0.001 including the first generation,
L = 478, k = 5, N = 10, p = 0.041 excluding the first generation)
and Unequal Movements conditions (L = 870, k = 6, N = 10,
p < 0.001 including the first generation, L = 511, k = 5, N = 10,
p < 0.001 excluding the first generation), figure 6.

A Kolmogorov–Smirnov distance on distribution of nPVI
at the last generation confirmed that the Equal Movements
conditions (LARGE LARGE and SMALL SMALL) had a different
nPVI from the Unequal Movements conditions (LARGE SMALL

SMALL and SMALL SMALL LARGE), D = 0.84, p < 0.001. A t-test at
the final generation suggested that Unequal Movements con-
ditions (M = 50.54, SD = 14.96) had higher nPVIs than Equal
Movements conditions (M = 15, SD = 15.41), t455.00 = 25.03,
p < 0.001, d = 2.34.

(c) Hypothesis 3: movement size predicts the mean
inter-onset-interval of Equal Movements

We predicted that Equal Movements conditions (LARGE LARGE
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Figure 3. Jensen–Shannon divergence (JSD) calculated between each trial
and all trials from different conditions at each generation, by generation.
Error bars represent the 95% confidence intervals.
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small movements produce shorter IOIs (β =−192.423,
SE = 2.833, t16347.593 =−67.93, p < 0.001), figure 4.

We predicted that both conditions including all equal
movements, whichwe refer to as EqualMovementsConditions
(LARGE LARGE and SMALL SMALL) would show an increase in
RSPB20202001—13/10/20—23:25–Copy Edited by: Not Mentioned
and SMALL SMALL) would show isochronous rhythms, but with
different IOIs (SMALL SMALL should have shorter IOIs than
LARGE LARGE). IOIs were not normally distributed (Shapiro–
Wilk: W = 0.817, p < 0.001), but the difference between the
IOIs produced in both conditions were also confirmed by a
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Figure 4. Distributions of IOIs by condition, generation and movement size. (Online version in colour.)
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Mann–Whitney U test (U = 332850, p < 0.001): IOIs produced
in the LARGE LARGE condition (Med = 539 ms) were larger
than the ones produced in the SMALL SMALL condition
(Med = 472.5 ms), figure 7.
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Figure 5. Histogram of nPCs per condition and generation.
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Amixed effects model2, including condition and generation
as main effects, and participants nested by chain as a random
effect, showed that this pattern emerged over generations.
There was a significant interaction effect between condition
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and generation (β =−18.991, SE = 9.387, t55.971 =−2.023, p =
0.0479), indicating that as generations passed, the difference
in IOI between the LARGE LARGE and the SMALL SMALL condi-
tions increased. There was also a significant effect of
generation (β = 19.791, SE = 6.638, t55.984 = 2.982, p = 0.004), but
not of condition (p = 0.28)—figure 7.
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Figure 7. Mean Inter-onset-intervals (IOIs) by condition (LARGE LARGE or SMALL SM
dashed line indicates the seed’s IOI (500 ms). (Online version in colour.)
(d) Hypothesis 4: the order of movements of different

sizes predicts the order of larger and smaller inter-
onset-intervals in Unequal Movements conditions

We predicted that while Unequal Movements conditions
would show non-isochronous rhythms, they would have
longer IOIs in different places. This longer IOI (out of three)
RSPB20202001—13/10/20—23:25–Copy Edited by: Not Mentioned
should occur first when the large movement occurs first in
the sequence (LARGE SMALL SMALL condition), and third when
the large movement occurs last in the sequence (SMALL

SMALL LARGE condition).
We predicted that the condition (SMALL SMALL LARGE or LARGE

SMALL SMALL) to impact which order in the cycle (i.e. first, second
or third) is associated with longer IOIs. We should observe an
interaction effect between condition and order in a cycle. A
cycle was understood as three consequent IOIs, to reflect the
set of movements used, and the factor order in the cycle
could thus take the values 1, 2 or 3. Because we analysed
sequences of two such cycles (taps 4 to 10, i.e. 6 IOIs), there
were two IOIs per order in the cycle of movements per trial.

Condition andOrder in the cyclewere used as fixed effects,
and participants nested by chain were used as random effects

4 5 6

tion

generation (first to sixth). Error bars represent 95% confidence intervals. The
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in a linear mixed effects model. On the last generation, the
mixed effects model revealed significant effects of both order
in cycle (β =−84.50, SE = 7.705, t1374 =−10.967, p < 0.001), and
condition (i.e. SMALL SMALL LARGE, compared to LARGE SMALL

SMALL – β =−521.824, SE = 57.073, t10.952 =−9.143, p < 0.001).
An interaction effect between condition and order of the IOIs
in the cycle confirmed our prediction (β = 279.06, SE = 10.873,
t1374 = 25.666, p < 0.001), figure 8. This difference emerged
over time - see electronic supplementary material.

(e) Hypothesis 5: stability over generations
We hypothesized that our experiment would produce stable
rhythms, and that the rhythms produced by participants
would become easier to reproduce. Because our prediction
bore on the rhythmic sequence becoming stable, we used an
edit nPC distance, by analogy with the (edit) time distance
[25], it can be defined as the total cost of the minimal cost
set of substitutions, insertions or deletions among nPCs
necessary to transform the pattern of nPCs a participant
has heard into the pattern they have reproduced.

The edit nPC distance increased over time, as confirmed
by a Page Trend test, both when including the first generation
(L = 1668, k = 6, N = 20, p < 0.001) or excluding it (L = 978, k = 5,
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and the external curve is the distribution’s density. (Online version in colour
N = 20, p < 0.001). This result was unexpected. We had pre-
dicted an increase in stability, i.e. a decrease in the quantity
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predicted that differences in physical affordances and move-
ments produced by participants (an ecological factor of
attraction) would determine which rhythmic sequences
ended up being produced in the different conditions (different
attractors). We observed, as predicted, an overall pattern of
divergence between the different conditions.

Furthermore, the different conditions included in our study
could either fit or not fit with the rhythm of the seed: Equal
Movements conditions had only one size of movements, in
the sameway that the seed had only IOIs of the same duration.
Unequal Movements Conditions changed more than Equal
Movements conditions. Motor constraints and their fit with
different rhythmic sequences influenced both howmuch trans-
formation took place and which productions were stable.
Motor constraints had an effect on three features: (i) whether
the rhythm produced remained isochronous or not over six
generations of participants; (ii) the overall length of the IOIs

dition
SMALL SMALL LARGE

1st IOI 2nd IOI 3rd IOI

e coloured bands represent the 95% confidence intervals, points the raw data,
shorter IOIs occur. The differences in motor affordances cre-
ated an overall pattern of divergence: the distance between
rhythmic sequences produced by participants across different
conditions increased over experimental generations. Partici-
pants could have reproduced the isochronous seed and keep
IOIs identical throughout by moving faster for larger distances

or slower for smaller distances, but instead they tended to keep
of change, but we observed an increase in the quantity of
change. Additional analyses revealed that edit distances

a constant movement velocity and therefore tended to produce
unequal IOIs. We did not observe the reverse tendency, that is,
participants from the second generation onward hearing a
u
o
,
f
—

by
n
c
ro
depended, to some extent, on both ge
dition—see electronic supplementary mat
analyses, figure and similar results on edit
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measure of rhythmic structure—nPCs)
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